A Laurane Sesquiterpene and Rearranged Derivatives from the Chinese Red Alga Laurencia okamurai Yamada

Shui-Chun Mao and Yue-Wei Guo*

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zu Chong Zi Road 555, Zhangjiang Hi-Tech Park, Shanghai 201203, People's Republic of China

Received September 29, 2005

One new laurane sesquiterpenoid, 3β -hydroxyaplysin (2), and two novel rearranged sesquiterpenes, laurokamurenes A (3) and B (4), together with three known related compounds, 3α -hydroxydebromoaplysin (1), debromoaplysin (6), and laurinterol (7), have been isolated from the Chinese red alga *Laurencia okamurai*. Their structures, including relative stereochemistry, were determined on the basis of detailed interpretation of 2D NMR spectra and comparison with related known compounds.

Red algae of the genus *Laurencia* (Ceramiales, Rhodomelaceae) are found throughout the world, mostly in tropical and subtropical regions. Over the four decades since Irie's pioneering investigations on *Laurencia*,¹ a significant number of cuparene- and laurane-derived sesquiterpenoids have been isolated from the red algal genus *Laurencia*.² These sesquiterpenoids, mostly halogenated with bromine and a few even with iodine, comprise a class of metabolites characteristic of *Laurencia*.³

In the course of our ongoing program toward the isolation of biologically active compounds from Chinese marine organisms,^{4–6} we have recently examined the red alga *Laurencia okamurai* Yamada, collected off the coast of Nanji Island, Zhejiang Province, China, resulting in the discovery of several cuparene-derived sesquiterpenoids.⁷ Our continuing studies on the minor constituents of the same specimen led to the isolation of one additional new laurane sesquiterpenoid, 3β -hydroxyaplysin (2), and two novel sesquiterpenes, laurokamurenes A (3) and B (4), with an uncommon rearranged laurane skeleton, along with three known related compounds, 3α -hydroxydebromoaplysin (1),⁸ debromoaplysin (6),⁹ and laurinterol (7).¹⁰ We report herein the isolation and structural elucidation of these new minor compounds.

The algal material of *L. okamurai* was extracted with acetone. The Et₂O-soluble portion of this extract was subjected to repeated chromatographic separations [normal-phase silica gel (200-300 and 400-600 mesh) column chromatography, Sephadex LH-20 column chromatography, and reversed-phase HPLC] to give three new sesquiterpenoids (2-4), respectively, along with three known related sesquiterpenes (1, 6, and 7).

The known sesquiterpenes were readily identified as 3α -hydroxydebromoaplysin (1), debromoaplysin (6), and laurinterol (7), by comparing their spectroscopic data with those reported in the literature.^{8–10} Among them, compound 1 was recently reported as a synthetic intermediate derived in the course of synthesis of **6** and aplysin.⁸ However, this is the first report to isolate it from a natural source. The ¹³C NMR data of 1 are also reported for the first time.

Compound **2** was obtained as a colorless oil. Its molecular formula, $C_{15}H_{19}O_2Br$, was determined by HREIMS at m/z 310.0591 [M]⁺ (calc 310.0568), in combination with ¹³C NMR (DEPT) experiments, suggesting the presence of six degrees of unsaturation. The dominant [M]⁺ peaks at m/z 310 and 312 with intensities of 1/0.98 in the HREIMS spectrum indicated the presence of one bromine atom in the molecule. The presence of a hydroxyl group was evident from an IR absorption at 3380 cm⁻¹. The ¹H NMR

spectrum revealed two *para*-disposed aromatic protons at δ 6.58 (s, 1H) and 7.17 (s, 1H), an aromatic methyl group at δ 2.31 (s, 3H), and three aliphatic methyl groups at δ 1.28 (s, 3H), 1.39 (s, 3H), and 1.40 (s, 3H), which implied, from the required degrees of unsaturation, a tricyclic sesquiterpenoid framework.

The NMR data of 2 were very similar to those of the co-occurring sesquiterpenes, 3α -hydroxydebromoaplysin (1)⁸ and laurinterol (7).¹⁰ Analysis of the 2D NMR spectra of **2** readily determined the presence of the same 1,2,4,5-tetrasubstituted benzene ring partial structure as in 7 in the molecule. Further, the ¹H-¹H COSY spectrum of 2 showed cross-peaks between H₂-4 (δ 1.63, m) and H_2 -5 (δ 1.75, ddd, J = 12.3, 4.8, 3.5 Hz, H-5 α ; 2.02, ddd, J =12.3, 10.8, 3.1 Hz, H-5 β), indicating clearly the linkage between C-4 and C-5 in the molecule. Moreover, strong long-range correlations between H₃-13 and C-1 (δ 54.0), C-2 (δ 101.2), and C-5 (δ 40.8) observed in the HMBC experiment confirmed the connections between C-1 and C-2 and C-5. Furthermore, the correlations between H₃-15 and C-3 (δ 82.8) and C-4 (δ 37.0) confirmed the connectivity between C-3 and C-4. Additionally, the correlations between H₃-14 and C-1, C-2, and C-3 suggested the connections between C-2 and C-1 and C-3. The above observations, bearing in mind the presence of an oxygen-bearing quaternary carbon at δ 82.8 (C-3), indicated the presence of the same 1,2,3trimethyl-3-hydroxycyclopentenyl moiety as in 1.

Careful comparison of 1D and 2D NMR data (${}^{1}H{}^{-1}H$ COSY, HMQC, and HMBC) of **2** and model compound **1** revealed that the differences between them were due to the nature of the substitution pattern of the benzene ring and the configuration at C-3, while the rest of the structure of **2** is the same as in **1**. The relative configuration at C-1, C-2, and C-3 was determined by NOESY experiments on **2**. Significant NOE correlations were observed between H₃-13 at δ 1.39 and H₃-14 at δ 1.28 and H β -5 at δ 2.02, while no correlation was observed between H₃-15 at δ 1.40 and H₃-13 and H₃-14. These observations indicated that H-5 α and H₃-15 were α -oriented, while HO-3, H-5 β , H₃-13, and H₃-14 were β -oriented. Detailed analysis of its 2D NMR spectra allowed unambiguous assignments of the ¹H and ¹³C NMR data of **2** (Tables 1 and 2). Therefore, the structure of **2** was elucidated as 3β hydroxyaplysin.

Compound **3** was isolated as a colorless oil. The molecular formula $C_{15}H_{19}OBr$, established by HREIMS at m/z 294.0614 [M]⁺ (calc 294.0619), is identical to that of the co-occurring laurinterol (**7**).¹⁰ The phenolic nature of **3** was shown by an IR band at 3520 cm⁻¹ and UV absorptions at 202, 232, and 299 nm. The ¹H NMR spectrum revealed the presence of two *para*-disposed protons (δ 6.84, s and δ 7.20, s), one olefinic proton (δ 5.77, dd, J = 3.1, 1.7 Hz), an allylic methylene (δ 2.11, ddd, J = 11.0, 9.2, 1.7 Hz and

^{*} To whom correspondence should be addressed. Tel/Fax: 86-21-50805813. E-mail: ywguo@mail.shcnc.ac.cn.

Table 1. ¹H NMR Data for Compounds 1-4 and 6^a

position	1	2	3	4	6 ^b
3			2.06 (m)	2.01 (m)	1.84 (m)
4	1.64 (m)	1.63 (m)	2.11 (ddd, 11.0, 9.2, 1.7)	2.01 (m)	1.17 (m)
			2.55 (ddd, 11.0, 8.5, 3.1)	2.41 (ddd, 11.5, 9.7, 2.9)	1.60 (m)
5	1.60 (m)	1.75 (ddd, 12.3, 4.8, 3.5)	5.77 (dd, 3.1, 1.7)	5.69 (br s)	1.60 (m)
	1.75 (m)	2.02 (ddd, 12.3, 10.8, 3.1)			1.78 (m)
7				7.21 (d, 7.9)	
8	6.57 (d, 1.2)	6.58 (s)	6.84 (s)	7.10 (d, 7.9)	6.54 (d, 1.6)
10	6.71 (dd, 7.5, 1.2)			7.10 (d, 7.9)	6.67 (dd, 8.4, 1.6)
11	6.93 (d, 7.5)	7.17 (s)	7.20 (s)	7.21 (d, 7.9)	6.93 (d, 8.4)
12	2.30 (s)	2.31 (s)	2.34 (s)	2.33 (s)	2.29 (s)
13	1.36 (s)	1.39 (s)	0.90 (s)	0.97 (s)	1.33 (s)
14	1.25 (s)	1.28 (s)	0.99 (s)	1.09 (s)	1.30 (s)
15	1.23 (s)	1.40 (s)	1.03 (d, 6.6)	0.99 (d, 6.6)	1.07 (d, 6.8)
OH^b			5.34 (s)		

^{*a*} Bruker DRX 400 MHz spectrometers; chemical shifts (ppm) referenced to CDCl₃ ($\delta_{\rm H}$ 7.26). Proton coupling constants (*J*) in Hz are given in parentheses. The assignments were based on DEPT, ¹H-¹H COSY, HMQC, and HMBC experiments. ^{*b*} Phenol hydroxyl group in the case of **3**.

Table 2. ¹³C NMR Data for Compounds $1-4^a$

position	1	2	3	4
1	52.1 (C)	54.0 (C)	147.5 (C)	152.8 (C)
2	99.7 (C)	101.2 (C)	49.5 (C)	47.7 (C)
3	81.2 (C)	82.8 (C)	45.0 (CH)	45.8 (CH)
4	38.0 (CH ₂)	37.0 (CH ₂)	38.5 (CH ₂)	37.8 (CH ₂)
5	40.2 (CH ₂)	40.8 (CH ₂)	131.1 (CH)	126.1 (CH)
6	134.2 (C)	136.4 (C)	123.4 (C)	135.5 (C)
7	157.2 (C)	157.1 (C)	152.5 (C)	127.5 (CH)
8	110.1 (CH)	111.3 (CH)	111.1 (CH)	128.6 (CH)
9	138.5 (C)	137.1 (C)	138.1 (C)	136.1 (C)
10	122.0 (CH)	114.5 (C)	114.4 (C)	128.6 (CH)
11	122.7 (CH)	126.6 (CH)	132.0 (CH)	127.5 (CH)
12	21.7 (CH ₃)	23.1 (CH ₃)	22.8 (CH ₃)	21.1 (CH ₃)
13	23.8 (CH ₃)	23.4 (CH ₃)	20.6 (CH ₃)	20.6 (CH ₃)
14	15.8 (CH ₃)	14.7 (CH ₃)	26.2 (CH ₃)	26.2 (CH ₃)
15	22.3 (CH ₃)	22.4 (CH ₃)	14.3 (CH ₃)	14.0 (CH ₃)

^{*a*} Bruker DRX 100 MHz spectrometers; δ values are reported in ppm referenced to CDCl₃ (δ_C 77.0) as internal standard. The assignments were based on DEPT, ¹H–¹H COSY, HMQC, and HMBC experiments.

δ 2.55, ddd, J = 11.0, 8.5, 3.1 Hz), an aromatic methyl (δ 2.34, s), and three aliphatic methyls (δ 0.90, s; δ 0.99, s; and δ 1.03, d, J = 6.6 Hz). The NMR data mentioned above were strongly reminiscent of those of **5**,¹¹ a synthetic product from the acidcatalyzed rearrangement of laurinterol methyl ether. A comparison of the NMR data of **3** and **5** revealed the only difference resided in the nature of the substituent at C-7 on the benzene ring (-OH in **3**; $-OCH_3$ in **5**). The position of the double bond at C-1 and C-5 and the geminal methyls at C-2 on the cyclopentenyl moiety were further configuration of H₃-15 at C-3 was assigned as α by the observation of NOE correlations (Figure 2b) between H-3β (δ 2.06, m) and H₃-14 (δ 0.99, s) and between H₃-13 (δ 0.90, s) and H₃-15 (δ 1.03, d, J = 6.6 Hz).

Compound **4** was also isolated as a colorless oil. The compound was shown to be a hydrocarbon with the molecular formula $C_{15}H_{20}$ by HREIMS at m/z 200.1554 [M]⁺ (calc 200.1565). The ¹H NMR spectrum exhibited two 2H doublets at δ 7.10 (d, J = 7.9 Hz, 2H) and 7.21 (d, J = 7.9 Hz, 2H), indicating the presence of a 1,4-disubstituted benzene ring. Further, the NMR data suggested the aliphatic portion of the molecule to be 2,2,3-trimethyl- $\Delta^{1(5)}$ -cyclopentenyl, the same as that of **3**, in accord with the proposed structure **4**. All NMR data of **4** were unambiguously assigned by ¹H–¹H COSY, HMQC, and HMBC experiments as reported in Tables 1 and 2. Once again, the relative configuration of C-3 was deduced to be the same as that of **3** on the basis of the NOESY experiments.

A growing collection of brominated and nonbrominated sesquiterpenoids, which can be classified into more than 20 sesquiterpenoid

Figure 1. Structures of compounds 1–7.

Figure 2. Selected key HMBC correlations (a) and NOESY correlations (b) for laurokamurene B (3).

skeletons, continue to be isolated from red algae of the genus *Laurencia* in recent years.¹² However, in most cases, three methyls in the aliphatic portion were located at either positions 1, 2, 3 (laurene type) or 1, 2, 2 (cuparene type). To the best of our knowledge, this is the first report of the isolation of sesquiterpenes with a 2,2,3-trimethylcyclopentenyl moiety from a natural source.

Although many *Laurencia* sesquiterpenes exhibit antibacterial and antifungal bioactivities,^{13–15} new compounds **2–4** were found to be inactive against the fungus *Cladosporium cucumerinum*. Further studies should be conducted to test other bioactivities, such as cytotoxic and anti-inflammatory properties, of these new compounds, as well as to understand the true biological/ecological role of these metabolites in the life cycle of the algae.

General Experimental Procedures. Optical rotations were measured on a Perkin-Elmer 241MC polarimeter. IR spectra were recorded on a Nicolet Magna FT-IR 750 spectrometer. NMR spectra were measured on a Bruker DRX-400 spectrometer with the residual CHCl₃ ($\delta_{\rm H}$ 7.26 ppm; $\delta_{\rm C}$ 77.01 ppm) as an internal standard. EIMS and HREIMS spectra were recorded on a Finnigan-MAT-95 mass spectrometer. All solvents were of analytical grade (Shanghai Chemical Plant, Qindao, People's Republic of China). Reversed-phase HPLC (Agilent 1100 series liquid chromatography using a VWD G1314A detector at 210 nm and a semipreparative ODS-HG-5 [5 µm particle size, $10 \text{ mm}(i.d.) \times 25 \text{ cm}$ column) was employed for the purification. Commercial Si gel (Qing Dao Hai Yang Chemical Group Co., 200-300 and 400-600 mesh) was used for column chromatography, and precoated Si gel plates (Yan Tai Zi Fu Chemical Group Co., G60 F-254) were used for analytical TLC. Sephadex LH-20 (Amersham Biosciences) was also used for column chromatography.

Biological Material. The alga *L. okamurai* was collected by hand along the coast of Nanji Island in the East China Sea, Zhejiang Province, China, at a depth of 0.5-1 m, in June 1999, and the algal material was stored at -20 °C until processed. A voucher specimen (No. MA99-01) was deposited at the Shanghai Institute of Materia Medica, SIBS-CAS for inspection.

Extraction and Isolation. The fresh algal material (dry weight, 500 g) of L. okamurai was exhaustively extracted with acetone $(3 \times 1 \text{ L})$. The acetone extract was concentrated in vacuo to give a residue (36.1 g), which was partitioned between Et₂O and H₂O. The Et₂O-soluble portion (25.8 g) was chromatographed by Si gel CC using light petroleum ether with increasing amounts of Et2O as eluent to give 12 fractions (I-XII) on the basis of TLC analysis. Fraction II, eluted with pure petroleum ether, was further chromatographed on Si gel (petroleum ether) to afford compounds 4 (3.7 mg) and 6 (850 mg). Fraction IV, eluted with petroleum ether/Et₂O (8:2), was further purified by Si gel CC using a stepped gradient (petroleum ether/Et₂O, 9:1-7.5:2.5) to yield 3 (3.2 mg) and 7 (2.5 g). Fraction VI, eluted with petroleum ether/ Et₂O (7.5:2.5), was further separated on Si gel CC (petroleum ether/ Et₂O, 8:2, as eluent) and followed by RP-HPLC purification (MeOH/ H_2O , 7.5:2.5, as eluent) to afford two pure minor compounds, 1 (2.1) mg) and 2 (3.5 mg).

3β-Hydroxyaplysin (2): colorless oil; $[\alpha]_D^{24} - 20.0$ (*c* 0.25, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 207 (4.51), 232 (3.55), 299 (3.51) nm; IR ν_{max} (KBr) 3380, 2924, 2852, 1714, 1614, 1579, 1257, 1232, 1090, 1040, 924 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; HREIMS *m/z* 310.0591 (calc for C₁₅H₁₉O₂Br, [M]⁺ 310.0568). **Laurokomurenene A (3):** colorless oil; $[\alpha]_D^{24} + 13.2$ (*c* 0.42, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 202 (5.01), 232 (4.10), 299 (3.55) nm; IR ν_{max} (KBr) 3520, 2958, 2935, 1728, 1610, 1551, 1387, 1230, 1103, 1003, 924 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; HREIMS *m*/*z* 294.0614 (calc for C₁₅H₁₉OBr, [M]⁺ 294.0619).

Laurokomurene B (4): colorless oil; $[\alpha]_{2}^{24}$ +10.0 (*c* 0.09, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 202 (4.85), 249 (4.21) nm; IR ν_{max} (KBr) 3045, 3025, 2965, 2935, 2875, 1610, 1518, 1440, 1377, 1365 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; HREIMS *m*/*z* 200.1554 (calc for C₁₅H₂₀, [M]⁺ 200.1565).

Acknowledgment. This research work was financially supported by the "National Natural Science Foundation of China" (No. 20572116) and STCSM Projects (Nos. 04ZR14156 and 054307062). We are indebted to L.-D. Gu of Shanghai Normal University for the identification of the algal specimen.

Supporting Information Available: This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) Irie, T.; Suzuki, M. Tetrahedron Lett. 1965, 1091-1099.
- (2) Martin, J. D.; Darias, J. In *Marine Natural Products*; Scheuer, P. J., Ed.; Academic Press: New York, 1978; Vol. I, pp 151–161.
- (3) Izac, R. R.; Sims, J. J. J. Am. Chem. Soc. 1979, 101, 6136-6137.
- (4) Sun, Y.-Q.; Guo, Y.-W. Tetrahedron Lett. 2004, 45, 5533-5535.
- (5) Huang, X.-C.; Zhao D.; Guo, Y.-W.; Wu, H.-M.; Trivellone, E.; Cimino, G. Tetrahedron Lett. 2004, 45, 5501–5504.
- (6) Zhang, W.; Guo, Y.-W.; Mollo, E.; Cimino, G. *Helv. Chim. Acta* 2004, 87, 2341–2345.
- (7) Mao, S.-C.; Guo, Y.-W. Helv. Chim. Acta 2005, 88, 1034-1039.
- (8) Nemoto, H.; Nagamochi, M.; Ishibashi, H.; Fukumoto, K. J. Org. Chem. 1994, 59, 74–79.
- (9) Suzuki, M.; Kurosawa, E. *Tetrahedron Lett.* 1978, 28, 2503–2506.
 (10) Irie, T.; Suzuki, M.; Hayakawa, Y. *Bull. Chem. Soc. Jpn.* 1969, 42,
- 843-844. (11) Suzuki, M.; Hayakawa, Y.; Irie, T. Bull. Chem. Soc. Jpn. **1969**, 42,
- 3342-3344.
- (12) Mao, S.-C.; Guo, Y.-W. Chin. Tradit. Herb. Drugs 2004, 35, 8-17.
- (13) Ichiba, T.; Higa, T. J. Org. Chem. 1986, 51, 3364-3366.
- (14) Vairappan, C. S.; Daitoh, M.; Suzuki, M.; Abe, T.; Masuda, M. *Phytochemistry* **2001**, *58*, 291–297.
- (15) Davyt, D.; Fernandez, R.; Suescuh, L.; Mombrú, A. W.; Saldaòa, J.; Domínguez, L.; Coll, J.; Fujii, M. T.; Manta, E. J. Nat. Prod. 2001, 64, 1552–1555.

NP0503810